Extrapolation of Survival Curves from Cancer Trials Using External Information.

نویسندگان

  • Patricia Guyot
  • Anthony E Ades
  • Matthew Beasley
  • Béranger Lueza
  • Jean-Pierre Pignon
  • Nicky J Welton
چکیده

BACKGROUND Estimates of life expectancy are a key input to cost-effectiveness analysis (CEA) models for cancer treatments. Due to the limited follow-up in Randomized Controlled Trials (RCTs), parametric models are frequently used to extrapolate survival outcomes beyond the RCT period. However, different parametric models that fit the RCT data equally well may generate highly divergent predictions of treatment-related gain in life expectancy. Here, we investigate the use of information external to the RCT data to inform model choice and estimation of life expectancy. METHODS We used Bayesian multi-parameter evidence synthesis to combine the RCT data with external information on general population survival, conditional survival from cancer registry databases, and expert opinion. We illustrate with a 5-year follow-up RCT of cetuximab plus radiotherapy v. radiotherapy alone for head and neck cancer. RESULTS Standard survival time distributions were insufficiently flexible to simultaneously fit both the RCT data and external data on general population survival. Using spline models, we were able to estimate a model that was consistent with the trial data and all external data. A model integrating all sources achieved an adequate fit and predicted a 4.7-month (95% CrL: 0.4; 9.1) gain in life expectancy due to cetuximab. CONCLUSIONS Long-term extrapolation using parametric models based on RCT data alone is highly unreliable and these models are unlikely to be consistent with external data. External data can be integrated with RCT data using spline models to enable long-term extrapolation. Conditional survival data could be used for many cancers and general population survival may have a role in other conditions. The use of external data should be guided by knowledge of natural history and treatment mechanisms.

منابع مشابه

Prognostic factors of survival of patients with oesophageal cancer under radiotherapy using cox regression model

oesophageal cancer is one of the most fatal cancer in human in spite of high incidence in the north of Iran and poor prognosis,there is not information regarding prognostic factors in this area.this study was conducted to determine prognodtic factors of the survival of patients with oesophageal cancer under radiotherapy.We conducted a descriptive-analytical study using historical cohort that ha...

متن کامل

Survival from skin cancer and its associated factors in Kurdistan province of Iran

Background: We explored survival of skin cancer and its determinants in Kurdistan province of Iran. Methods: In a retrospective cohort design, we identified all registered skin cancer patients in Kurdistan Cancer Registry from year 2000 to 2009. Information on time and cause of death were obtained from Registrar’s office and information on type, stage and anatomic locations were extracted fr...

متن کامل

The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model

  Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...

متن کامل

Extrapolating Survival from Randomized Trials Using External Data: A Review of Methods

This article describes methods used to estimate parameters governing long-term survival, or times to other events, for health economic models. Specifically, the focus is on methods that combine shorter-term individual-level survival data from randomized trials with longer-term external data, thus using the longer-term data to aid extrapolation of the short-term data. This requires assumptions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Medical decision making : an international journal of the Society for Medical Decision Making

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 2017